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Open problem

Magic Mountain and Devil’s Staircase swapping problems∗

Shigeru Arimoto∗∗

Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK,
Canada, S7N 5C9

Received 19 June 2000

Two open questions concerning additivity problems in theoretical chemistry have been
posed in this article. Each question involves swapping of the square root function (in the
formula for the zero-point energy of a linear oscillator) with a highly irregular function. Global
contextualization of molecular problems and function swapping are indispensable strategies
in tackling additivity problems in theoretical chemistry.
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1. Introduction

Special magnitudes of universal constants and specific forms of functions manifest
themselves in the expressions of natural laws. Nevertheless, it is sometimes legitimate
and meaningful to embed fixed constants or functions into a broader context and make
them change. For example, one can regard the Planck constant as a variable and let it
tend to zero so that classical mechanics can be considered as a limit of quantum mechan-
ics1.

Global contextualization is an essential strategy in tackling additivity problems
in theoretical chemistry. In the “repeat space theory” (RST) (cf. [1–5]), which was
initially developed for the additivity problems of the zero-point energies of molecules

∗ The initial version of the problems was made public at Quantum Physics Centennial Symposium,
University of Saskatchewan, Canada, March 17–19, 2000.∗∗On leave from: Institute for Fundamental Chemistry, 34-4 Takano-Nishihiraki-cho, Sakyo-ku, Kyoto
606-8103, Japan.

1 George Gamow reversed this process and magnified the Planck constant in his instructive and amusing
bookMr. Tompkins in Wonderland. In Gamow’s book, Mr. Tompkins, the little clerk of a big city bank,
experiences a manifestation of Heisenberg’s uncertainty principle in a billiard room filled with men in
shirt sleeves playing billiards: “As soon as the ball was placed in the enclosure, the whole inside of the
triangle became filled up with the glittering of ivory. ‘You see!’ said the professor, ‘I defined the position
of the ball to the extent of the dimension of the triangle, i.e. several inches. This results in considerable
uncertainty in the velocity, and the ball is moving rapidly inside the boundary.’ ‘Can’t you stop it?’
asked Mr. Tompkins. ‘No – it is physically impossible. Any body in an enclosed space possesses a
certain motion – we call it zero-point motion.’ ” (G. Gamow,Mr. Tompkins in Wonderland, from the
chapterQuantum Billiards.)
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having repeating identical moieties (cf. references in [2]), it is a significant procedure to
embed the square root function in the formula (for the zero-point energyEzero of a linear
oscillator)

Ezero= h̄

2

√
k

m
(1)

into a functional space endowed with a suitable topology, allowing the function to change
in the space. One of the fundamental theorems in the RST, referred to as the Asymptotic
Linearity Theorem (ALT) [1,2,4,5], implies that the zero-point energyEN of a hydro-
carbon havingN repeating identical moieties between two prescribed end moieties will
retain its asymptotic linear form:

EN = aN + b + o(1) (2)

even if the square root function in equation (1) is replaced by an arbitrarily given ab-
solutely continuous function. For example, suppose thatξ is any positive real number
and that the formula forEzero were given by

Ezero= h̄

2

(
k

m

)ξ
. (3)

Then the zero-point energyE′N of a hydrocarbon havingN repeating identical moieties
between two prescribed end moieties would have an asymptotic linear form:E′N =
a′N + b′ + o(1), wherea′ andb′ are real constants dependent onξ .

A negative solution of either of the open problems given in section 3 automatically
proves the following conjecture, and the solution of either problem will play a key role
in the future development of the repeat space theory (RST). (Cf. [2,3] for the genesis of
the RST and a variety of applications of the RST.)

Asymptotic Linearity Theorem Extension Conjecture. (ALTEC,C(I) version.) The
Asymptotic Linearity Theorem (ALT) cannot be extended fromAC(I ) to C(I), where
AC(I ) denotes the functional space of all real-valued absolutely continuous functions
defined on closed intervalI , andC(I) denotes the functional space of all real-valued
continuous functions defined on closed intervalI .

Before formulating our problem, we need some preparation. LetChN(m, k) denote
the linear chain with free ends consisting ofN particles each of massm and separation 1
that can vibrate harmonically under a restoring force due to the first-neighbor interac-
tion k. Let

EN(ϕ) =
N∑
i=1

h̄

2
ϕ

(
4
k

m
sin2 (i − 1)π

2N

)
, (4)
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where ϕ denotes a real-valued continuous function defined on the closed interval
[0,4(k/m)]. Setting (̄h/2) = k = 1 andm = 4 in equation (4), let

FN(ϕ) =
N∑
i=1

ϕ

(
sin2 (i − 1)π

2N

)
, (5)

whereϕ denotes a real-valued continuous function defined on the closed interval[0,1].
If ξ is an arbitrarily given positive real number and ifRξ denotes the function

defined byRξ (x) = xξ , thenEN(R1/2) expresses the zero-point energy ofChN(m, k),
andEN(R1/2) can be explicitly expressed in terms of the cotangent function (cf. [1]):

EN(R1/2) = h̄

2
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m

(
cot

(
π

4N

)
− 1

)
. (6)

Inspection of the graph of this as a function ofN for fixedm andk, reveals a strong
primary correlation betweenN andEN(R1/2). In fact, EN(R1/2) has an asymptotic
line:

EN(R1/2) = h̄

2

√
k

m

(
4

π
N − 1

)
+ o(1), (7)

where o(1) denotes a function ofN such that o(1)→ 0 asN →∞. Note that in general
a real sequenceEN has an asymptotic line, i.e.EN = aN + b + o(1), N → ∞ if and
only if the limits a = limN→∞ EN/N , b = limN→∞(EN − aN), a, b ∈ R exist. For
EN(R1/2), since cotθ = 1/θ − θ/3+ (higher order terms), forθ ∈ (0, π), we have
a = (h̄/2)√k/m(4/π), b = −(h̄/2)√k/m.

For an arbitrarily given positive real numberξ , the graph ofEN(Rξ ) as a function
of N for fixedm andk, reveals a strong asymptotic linear correlation betweenN and
EN(Rξ ). Notice that by the definitions ofEN(Rξ ) andFN(Rξ ) we have

EN(Rξ ) = h̄

2

(
4k

m

)ξ
FN(Rξ ). (8)

The graphs ofFN(Rξ ) for N = 2,3, . . . ,200 andξ = 0.1,0.3, . . . ,2.9 presented
in figure 1 indicate strong asymptotic linear correlations betweenN andFN(Rξ ).

2. Magic Mountain and Devil’s Staircase

Let φ : [0,1] → [0,1] be the function defined by

φ(x) =
{

2x if 0 6 x < 1/2,
2(1− x) if 1/26 x 6 1,

(9)

letMn : [0,1] → R be the function defined by

Mn(x) = φ(x)

2
+ φ(φ(x))

22
+ φ(φ(φ(x)))

23
+ · · · + φ(φ(φ(φ(. . . (x)))) . . .)

2n
, (10)
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Figure 1. Graphs ofFN(Rξ ) as functions ofN .

and letM : [0,1] → R be the function defined by

M(x) = lim
n→∞Mn(x). (11)

It is easy to check thatMn is a Cauchy sequence in the Banach spaceC([0,1]) equipped
with the sup norm. ThusM is a well-defined continuous function on[0,1]. Getting
inspiration from Weierstrass’ well-known construction of a continuous and nowhere dif-
ferentiable function, T. Takagi constructedM and proved thatM is continuous and
nowhere differentiable on its domain [7], and henceM is often called the Takagi func-
tion (cf. [6,8] and references therein). Throughout this article, we shall refer to the
functionM as Magic Mountain.

The graph of Magic Mountain is shown in figure 2. The larger square surrounding
the graph corresponds to the area[0,1] × [0,1]. The part of the graph contained in the
smaller square is similar to the entire graph. The graph of Magic Mountain possesses
within itself infinitely many reduced-size self-replicas.

Let D : [0,1] → R denote the well-known Cantor function (often called Devil’s
Staircase), which is continuous but not absolutely continuous on its domain. Let 0<

η 6 1 and letDη : [0,1] → R be the function defined byDη(x) = D(ηx). Throughout
this article, functionDη shall be referred to as Devil’s Staircase of typeη.



S. Arimoto / Open problems 217

Figure 2. Magic Mountain.

3. Open problems

Now recall the definition ofFN(ϕ) given by equation (5). We know that
(h̄/2)FN(R1/2) expresses the zero-point energy of the linear chainChN(4,1) and that
FN(R1/2) has an asymptotic line. What if one swapsR1/2 with Magic Mountain or
Devil’s Staircase of an arbitrarily given and fixed typeη, 0< η 6 1? Here, then, are our
two open problems:

(I) Magic Mountain swapping problem.
Does the sequenceFN(M) have an asymptotic line?

(II) Devil’s Staircase swapping problem.
Does the sequenceFN(Dη) have an asymptotic line?

Remark. If n is an arbitrarily given and fixed positive integer, thenMn is absolutely
continuous on the closed interval[0,1], and the Asymptotic Linearity Theorem (ALT)
implies that the sequenceFN(Mn) has an asymptotic line.
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